正高级人员
唐贵谦 / 研究员
  • 电子邮件:
  • 研究方向:

    大气物理与大气化学交互作用及其对大气污染的影响

简介

2009-12--2010-01   台湾中央大学   访问学者
2006-09--2010-06   中国科学院大气物理研究所   博士
2003-09--2006-06   南开大学环境科学与工程学院   硕士
1999-09--2003-06   山东大学环境科学与工程学院   学士


2022-01~现在, 中国科学院大气物理研究所, 研究员
2017-02~2022-01,中国科学院大气物理研究所, 副研究员
2012-10~2012-12,德国卡尔斯鲁尔气象与气候研究所, DAAD奖学金
2010-07~2017-01,中国科学院大气物理研究所, 助理研究员

代表论著

[1]. Chen,H., Tang,G.*,Song,T.*,Chen,X.,Wang,Y.,Cheng,M.,Liu,B.,and Wang,Y.,Free convection exacerbates surface ozone pollution by enhancing the vertical exchange of ozone,J. Harzad. Mater.,493,138409,2025.

[2]. Liu,Y.,Zhang,Y.,Yang,F.,Liang,L.,and Tang,G.*,Huge challenges of improving ozone pollution in China: High regional background ozone concentrations calculated from observational data,Environ. Pollut.,10.1016/j.envpol.2025.126162,2025.

[3]. Liu,Y.,Wang,Y.,Liu,Y.,Cheng,M.,Liu,B.,Song,T.,Hu,B.,Yao,D.,Yu,M.,Shi,Y., Tang,G.*,and Wang,Y.,Determining the differences in O3-NOx-VOCs sensitivity between sauna and roast days,J. Environ. Sci., 10.1016/j.jes.2024.10.004,2025.

[4]. Kang,Y.,Wang,Y.,Cheng,M.,Liu,B.,Yao,D.,Wang,Y.,and Tang,G.*,Response of formaldehyde to meteorology in Beijing: Primary or secondary contributions,J. Environ. Sci.,10.1016/j.jes.2024.09.016,2025.

[5]. Kang,Y.,Wang,Y.,Cheng,M.,Wang,Q.,Huang,X.,Liu,B.,Wang,Y.,and Tang,G.*,Peroxyacetyl nitrate can be used as a comprehensive indicator of air pollution complex,Environ. Pollut.,349,123905,2024.

[6]. Tang,G. *,Cheng,M.,Wang,Y.,Bai,Z.,Kang,Y.,Shen,Y.,Huang,X.,Bian,J.,and Wang,Y.*,Can China replicate the miracle of particle pollution control for ozone pollution control?The Innovation Geosci.,2(1),100059,2024.

[7]. Liu,Y., Tang,G. *,Gao,J.,Wang,Y.,and Wang,Y.,Spatiotemporal differences in tropospheric ozone sensitivity and the impact of “dual carbon” goal,Sci. Bull.,69,422-425,2024.

[8]. Liu,Y., Tang,G.*,Contradictory response of ozone and particulate matter concentration to boundary layer meteorology,Environ. Pollut.,343,123209,2024.

[9]. Yao,D.,Wang,Y.,Bai,Z.,Cheng,M., Tang,G.*,Liu,Y.,Zhuoga,D.,Yu,H.,Bian,J.,Wang,Y.,Vertical distribution of VOCs in the boundary layer of the Lhasa Valley and its impact on ozone pollution,Environ. Pollut.,340,122786,2024.

[10]. Liu,Z.,Zha,F.*,Wang,Y.,Liu,B.,Yuan,B., Tang,G.*,Vertical evolution of the concentrations and sources of volatile organic compounds in the lower boundary layer in urban Beijing in summer,Chemosphere,332,138767,2023.

[11]. Kang,Y., Tang,G.*,Li,Q.,Liu,B.,Yao,D.,Wang,Y.,Wang,Y.,Wang,Y.,and Liu,W.,Problems with and improvement of HCHO/NO2 for diagnosing ozone sensitivity – A case in Beijing,Remote Sensing,15,1982. 2023.

[12]. 唐贵谦, 程萌田, 王迎红, 李昕, 王跃思, 柴油车(机)管控是我国空气质量持续改善的关键, 科学通报,68(28-29),3764-3767,2023.

[13]. Tang,G., Yao,D.,Kang,Y.,Liu,Y.,Liu,Y.,Wang,Y.,Bai,Z.,Sun,J.,Cong,Z.,Xin,J.,Liu,Z.,Zhu,Z.,Geng,Y.,Wang,L.,Li,T.,Li,X.,Bian,J.*,and Wang,Y.*, The urgent need to control volatile organic compound pollution over the Qinghai-Tibet Plateau,iScience,25,105688,2022.

[14]. Zhu,Z., Tang,G.*,Wu,L.*,Wang,Y.,Liu,B.,Li,Q.,Hu,B.,Li,T.,Bai,W.,and Wang,Y.,Significant decline in aerosols in the mixing layer in Beijing from 2015 to 2020: effects of regional coordinated air pollution control,Sci. Total Environ.,838,156364,2022.

[15]. Yu,M.,Zhou,W.,Zhao,X.,Liang,X.,Wang,Y.,and Tang,G.*,Is urban greening an effective solution to enhance environmental comfort and improve air quality?Environ. Sci. Technol.,56,5390-5397,2022.

[16]. Liu,Y., Tang,G.*,Liu,B.*,Zhang,X.,Li,Q.,Hu,Q.,Yu,M.,Ji,D.,Sun,Y.,Wang,Y.,and Wang,Y.,Decadal changes in ozone in the lower boundary layer over Beijing,China,Atmos. Environ.,275,119018,2022.

[17]. Yao,D., Tang,G.*,Wang,Y.,Yang,Y.,Wang,Y.,Liu,Y.,Yu,M.,Liu,Y.,Hu,H.,Liu,J.,Hu,B.,Wang,P.,and Wang,Y.,Oscillation cumulative volatile organic compounds on the northern edge of the North China Plain: Impact of mountain-plain breeze,Sci. Total Environ.,821,153541,2022.

[18]. Yao,D., Tang,G.*,Sun,J.,Wang,Y.,Yang,Y.,Liu,B.,He,H.,and Wang,Y.* Annual non-methane hydrocarbons trends in Beijing during 2000-2019,J. Environ. Sci.,112C,210-217,2022.

[19]. Li,X., Tang,G.*,Li,L.,Quan,W.,Wang,Y.,Zhao,Z.,Liu,N.,Hong,Y.,and Ma,Y.*,More upper air quality improvement in Shenyang: impact of elevated point emission reduction,J. Environ. Sci.,113,300-310,2022.

[20]. 李若羽,卞建春,唐贵谦*,李丹,白志宣,毛文书,拉萨夏季大气边界层气溶胶垂直结构特征,大气科学,46(3),666-676,2022.

[21]. 唐贵谦, 刘钰婷, 高文康, 王迎红, 宋涛, 程萌田, 王跃思*. 警惕大气污染和碳排放向西北迁移, 中国科学院院刊,37(2),230-237,2022.

[22]. 蒋诚, 唐贵谦*, 刘保献, 李启华*, 季祥光, 王蒙, 王跃思. 基于多轴差分光学吸收光谱探测的北京春季气溶胶垂直廓线, 光谱学与光谱分析,42(1),265-271,2022.

[23]. Wang,Y., Wang,Y.*, Tang,G.*,Yang,Y.,Li,X.,Yao,D.,Wu,S.,Kang,Y.,Wang,M.,Wang,Y., High gaseous carbonyl concentrations in the upper boundary layer in Shijiazhuang,China,Sci. Total Environ.,799,149438,2021.

[24]. Wang,M., Tang,G.*,Ma,M.*,Liu,Y.,Yu,M.,Hu,B.,Zhang,Y.,Wang,Y.,and Wang,Y. The difference of the boundary layer height between urban and suburban areas in Beijing and its implications for regional air pollution,Atmos. Environ.,260,118552,doi: 10.1016/j.atmosenv.2021.118552,2021.

[25]. Tang,G.,Liu,Y.,Huang,X.,Wang,Y.*,Hu,B.,Zhang,Y.,Song,T.,Li,X.,Wu,S.,Li,Q.,Kang,Y.,Zhu,Z.,Wang,M.,Wang,Y.,Li,T.,Li,X.,and Wang,Y.*,Aggravated ozone pollution in the strong free convection boundary layer,Sci. Total Environ.,788,147740,doi: 10.1016/j.scitotenv.2021.147740,2021.

[26]. Kang,Y., Tang,G.*,Li,Q.*,Liu,B.,Wang,Y.,Validation and evaluation of MAX-DOAS observed NO2 vertical profile in Beijing,Adv. Atmos. Sci.,38(7),1188-1196,doi: 10.1007/s00376-021-0370-1,2021.

[27]. Tang,G.,Wang,Y.,Liu,Y.,Wu,S.,Huang,X.,Yang,Y.,Wang,Y.,Ma,J.,Bao,X.,Liu,Z.,Ji,D.,Li,T.,Li,X.,and Wang,Y.*,Low particulate nitrate in the residual layer in autumn over the North China Plain,Sci. Total Environ.,782,146845,doi: 10.1016/j.scitotenv.2021.146845,2021.

[28]. Wu,S., Tang,G.*,Wang,Y.,Mai,R.,Yao,D.,Kang,Y.,Wang,Q.,and Wang,Y.,Vertical evolution of boundary layer VOCs in summer over the North China Plain and differences between winter and summer,Adv. Atmos. Sci., 38(7),1165-1176,doi: 10.1007/s00376-020-0254-9,2021.

[29]. Liu,Y., Tang,G.*,Wang,M.,Liu,B.,Hu,B.,Chen,Q.,and Wang,Y.,Impact of residual layer transport on air pollution in Beijing,China,Environ. Pollut.,271C,116325,doi: 10.1016/j.envpol.2020.116325,2021.

[30]. Yan,Y.,Wang,S.*,Zhu,J.,Guo,Y., Tang,G.*,Liu,B.,An,X.,Wang,Y.,and Zhou,B.*,Vertically increased NO3 radical in the nocturnal boundary layer,Sci. Total Environ.,763,142969,doi: 10.1016/j.scitotenv.2020.142969,2021.

[31]. Yao,D., Tang,G.*,Wang,Y.,Yang,Y.,Wang,L.,He,H.,and Wang,Y.*,Significant contribution of spring northwest transport to volatile organic compounds in Beijing,J. Environ. Sci.,104,169-181,doi: 10.1016/j.jes.2020.11.023,2021.

[32]. Tang,G., Liu,Y.,Zhang,J.*,Liu,B.,Li,Q.,Sun,J.,Wang,Y.,Xuan,Y.,Li,Y.,Pan,J.,Li,X.,and Wang,Y.*,Bypassing the NOx titration trap in ozone pollution control in Beijing,Atmos. Res.,249,150333,doi: 10.1016/j.atmosres.2020.105333,2021.

[33]. Cheng,M., Tang,G. *,Lv,B.,Li,X.,Wu,X.,Wang,Y.*,Source Apportionment of PM2.5 and Visibility in Jinan,China,J. Environ. Sci.,102,207-215,doi: 10.1016/j.jes.2020.09.012,2021.

[34]. Liu,Y., Tang,G.*,Huang,X.,Wei,K.,Wu,S.,Wang,M.,Wang,Y.,Zhang,J.,and Wang,Y.,Unexpected deep mixing layer in Sichuan Basin,China,Atmos. Res.,249,105300,doi: 10.1016/j.atmosres.2020.105300,2021.

[35]. Huang,X., Tang,G. *,Zhang,J.*,Liu,B.,Liu,C.,Zhang,J.,Cong,L.,Cheng,M.,Yan,G.,Gao,W.,Wang,Y.,Wang,Y.,Characteristics of PM2.5 pollution in Beijing after the improvement of air quality,J. Environ. Sci.,100,1-10,doi: 10.1016/j.jes.2020.06.004,2021.

[36]. Yu,M., Tang,G.*, Yang,Y.,Li,Q.,Wang,Y.,Miao,S.,Zhang,Y.,and Wang,Y.,The interaction between urbanization and aerosols during a typical winter haze event in Beijing,Atmos. Chem.,Phys.,20,9855-9870,2020.

[37]. Wu,S., Tang,G. *,Wang,Y.,Yang,Y.,Yao,D.,Zhao,W.,Gao,W.,Sun,J.,and Wang,Y.,Vertically decreased VOC concentration and reactivity in the planetary boundary layer in winter over the North China Plain,Atmos. Res.,240,104930,2020.

[38]. Wang,Y., Tang,G.*,Zhao,W.,Yang,Y.,Wang,L.,Liu,Z.,Wen,T.,Cheng,M.,Wang,Y.,and Wang,Y., Different roles of nitrate and sulfate in air pollution episodes in the North China Plain,Atmos. Environ.,224,117325,2020.


承担项目

( 1 ) 北京市大气颗粒物中硝酸盐迁移转化机制及防控措施, 负责人, 地方任务, 2025-05--2027-04
( 2 ) 残留层与边界层的垂直交换及其对地面污染的影响, 负责人, 中国科学院计划, 2023-12--2028-11
( 3 ) 边界层大气自由基的关键来源和转化机制, 负责人, 国家任务, 2023-10--2027-09
( 4 ) 大气成分垂直结构及其气候影响, 负责人, 国家任务, 2022-11--2024-10
( 5 ) 大气臭氧收支平衡垂直观测研究, 负责人, 研究所自主部署, 2022-06--2023-05
( 6 ) 大气边界层内臭氧生成敏感性垂直演变规律, 负责人, 国家任务, 2022-01--2025-12
( 7 ) 大气边界层关键热动力过程和卫星微波遥感新技术研究, 负责人, 中国科学院计划, 2022-01--2024-12
( 8 ) 北京市地区细颗粒物和臭氧输送特征及其主控因子, 负责人, 地方任务, 2022-01--2024-12
( 9 ) 臭氧及前体物的垂直分布与垂直交换规律, 负责人, 中国科学院计划, 2021-06--2022-05
( 10 ) 城市上空残留层中细颗粒物演变机理及其对近地面空气污染的作用研究, 负责人, 国家任务, 

         2019-01--2022-12
( 11 ) 大气残留层中NOx对PM2.5的作用研究,负责人, 中国科学院计划, 2018-08--2020-12
( 12 ) 基于污染物跨界输送和相互影响的典型区域综合立体观测,负责人, 国家任务, 2018-07--2021-06
( 13 ) 城市大气边界层内臭氧及其前体物垂直演变特征,负责人, 国家任务, 2018-01--2020-12
( 14 ) 北京含氧挥发性有机物来源及其对大气光化学污染的影响,负责人, 研究所自主部署, 

         2017-12--2019-11
( 15 ) 北京市大气污染防治综合解决方案研究-北京市颗粒物来源解析,负责人, 国家任务, 

         2017-07--2019-12
( 16 ) 丰台区颗粒物来源解析,负责人, 地方任务, 2017-07--2019-03
( 17 ) 大气氧化剂的水平输送、垂直交换和局地生成特征,负责人, 国家任务, 2017-06--2021-06
( 18 ) 京津冀高精度排放源清单建立及清单反演与校核,负责人, 中国科学院计划, 2012-10--2017-06